Influence of Tradition in Creating Signatures of Cultural Identity in Product Design

Mark Janura*

Faculty of Mechanical Engineering, Industrial Design, Ss "Cyril and Methodius" University of Skopje, Skopje, Republic of Macedonia

Abstract

The main goal of this master’s thesis is to contribute to the design and study of a form suitable for the development of products driven by natural influences. A specific goal is to explore modern trends in the field of industrial design and modern technological advances as a theoretical basis, necessary to create an innovative concept solution of a modular bionic form and structure that can be driven by natural influences.

The master’s thesis as a theoretical basis applies three disciplines: bionics, kinetic sculpture and modular design. Bionics offers numerous opportunities for inspiration, both aesthetically and functionally. This paper uses one of the most common natural phenomena known as the Fibonacci sequence, the golden ratio, which is the main motive for creating the end result of the entire research. Kinetic sculpture as a new branch in the art of modern times has contributed to the introduction of a new fourth dimension, the dimension of movement. The modular approach is a modern way of building a form, and then a way of producing it.

The aggregate results of these interdisciplinary studies have been applied and verified through a reactive fin design. Several variants of nature-inspired shapes and modular kinetic structures are offered that could be applied in different types of products with the possibility of moving under the influence of natural phenomena such as wind, rain, sea waves, etc. These shapes and structures could be used in the design of industrial products and architectural objects, but also in the design of equipment, furniture, toys for children, and of course in more complex engineering solutions.
МУНИФИЦИЛНО "СВ КИРИЛ И МЕТОДИЈ" – СКОПЈЕ, МАШИНСКИ ФАКУЛТЕТ
Постдипломски студии - Индустриски дизајн и маркетинг

Интердисциплинарен проект - Магистерска работа:

БИОИНСПИРИРАНИ КИНЕТИЧКИ СТРУКТУРИ ЗА ПРИМЕНА ВО ДИЗАЈНОТО, АРХИТЕКТУРАТА И УМЕТНОСТА

Ментор: Проф. д-р Софија Сидеренко
Кандидат: Дипл. граф. Марк Јанура

Скопје, Февруари 2021
Ментор: _проф. д-р Софија Сидоренко, Машински факултет - Скопје_

Членови на комисијата: _проф. д-р Софија Сидоренко, Машински факултет - Скопје_

вон. проф. д-р Иле Мирчески, Машински факултет - Скопје

вон. проф. д-р Виктор Илиев, Машински факултет - Скопје

Дата на одбрана: ______________

Дата на промоција: ______________
Марк Јанура

Биоинспирирани кинетички структури за примена во дизајнот, архитектурата и уметноста

Апстракт:

Основната цел на овој магистерски труд е да се даде придонес кон дизајнот и проучувањето на форма погодна за развој на производи придружувани од природни влијанија. Конкретна цел е да се истражат современите трендови во областа на индустрискиот дизајн и современите технологии достигнувања како теоретска подлога, неопходна за креирање на иновативно концепт решение на модуларна бионичка форма и структура која може да биде придружувана од природни влијанија.

Магистерскиот труд како теоретска основа применува три дисциплини: бионика, кинетичка скулптура и модуларен дизайн. Биониката нуди бројни можности за инспирација, како естетски така и функционални. Во овој труд е искористен еден од најчесто застапените природни феномени познат како Фибоначи секвенца, односно златниот пресек, кој е и главен мотив за креирање на крајниот резултат на целото истражување. Кинетичката скулптура како нова гранка во уметноста на модерното време придонесе за воведување на нова или четврта димензия, димензија на движење. Модуларниот пристап е модерен начин на градење на формата, а потоа и начин за нејзино производство.

Збирните резултати од овие интердисциплинарни истражувања се применети и проверени преку дизајн на реактивна перка. Понудени се неколку варијанти на форми и модуларни кинетички структури инспирирани од природата кои би можеле да бидат применувани во различни видови производи со можност за придружување под дејство на природни феномени како ветер, дожд, морски бранови итн. Овие форми и структури би можеле да најдат примена во дизајнот на индустриски производи и архитектонски објекти, но исто така во дизајн на опрема, мебел, играчки за деца, а секако и во посложени инженерски решенија.

Ключни зборови:
бионички дизајн, кинетичка уметност, модуларен дизајн, движење, реактивна перка
Bionic-inspired kinetic structures for application in design, architecture and art

Abstract:

The main goal of this master’s thesis is to contribute to the design and study of a form suitable for the development of products driven by natural influences. A specific goal is to explore modern trends in the field of industrial design and modern technological advances as a theoretical basis, necessary to create an innovative concept solution of a modular bionic form and structure that can be driven by natural influences.

The master's thesis as a theoretical basis applies three disciplines: bionics, kinetic sculpture and modular design. Bionics offers numerous opportunities for inspiration, both aesthetically and functionally. This paper uses one of the most common natural phenomena known as the Fibonacci sequence, the golden ratio, which is the main motive for creating the end result of the entire research. Kinetic sculpture as a new branch in the art of modern times has contributed to the introduction of a new fourth dimension, the dimension of movement. The modular approach is a modern way of building a form, and then a way of producing it.

The aggregate results of these interdisciplinary studies have been applied and verified through a reactive fin design. Several variants of nature-inspired shapes and modular kinetic structures are offered that could be applied in different types of products with the possibility of moving under the influence of natural phenomena such as wind, rain, sea waves, etc. These shapes and structures could be used in the design of industrial products and architectural objects, but also in the design of equipment, furniture, toys for children, and of course in more complex engineering solutions.

Key words:
bionic design, kinetic art, modular design, motion, reactive fin
СОДРЖИНА

1. ВОВЕД ... 7
 1.1. Цели на истражувањето ... 7
 1.2. Методологија и методи на истражувањето ... 8
 1.3. Фази на истражувањето ... 8
2. ТЕОРЕТСКА АНАЛИЗА .. 9
 2.1 Бионика .. 9
 2.1.1 Примери за употреба на бионички дизайн .. 9
 2.2 Модуларен дизайн .. 15
 2.2.1 Модуларност и архитектура на производи .. 17
 2.2.2 Модули .. 18
 2.2.3 Типови на модуларен дизайн ... 18
 2.3 Кинетичка скулптура .. 19
 2.3.1 Кинетичка скулптура создадена од оптичка илузија ... 19
 2.3.2 Кинетичка скулптура придвоена од природни појави како ветер, дожд, вода, струење
 на воздух итн. .. 21
 2.3.3 Кинетичка скулптура која својот лик го добива со движење на аголот на гледање
 односно со движење на публиката .. 24
 2.3.4 Кинетичка скулптура која користи светло .. 26
 2.3.5 Кинетичка скулптура која е водена од претходно програмирана механика 28
3. ПРЕЦИЗНО ДЕФИНИРАЊЕ НА ДИЗАЈНЕРСКОТО ПРОБЛЕМ ... 29
 3.1 Истражување на пазарот ... 30
 3.2 Дефинирање на соодветни функции .. 31
 3.3 Изнаоѓање на соодветен биолошки модел .. 32
4. РАЗВОЈ НА КОНЦЕПТНО РЕШЕНИЕ .. 39
 4.1 Изработка на почетни скици .. 39
 4.2 Изработка на прототипи .. 42
 4.3 Изработка на дигитални 3D модели .. 47
 4.4 Тестирање на прототипот ... 50
5. ДЕТАЛНА ИЗРАБОТКА .. 55
 5.1 Графички приказ на дизајн елементи на перката ... 55
 5.2 Влијание на изборот на материјал врз дизајнот на перката .. 59
Изработка на поединечни модули на перката поделена во четири фази

5.3.1 Фаза 1

5.3.2 Фаза 2

5.3.3 Фаза 3

5.3.4 Фаза 4

5.4 Дизајн на дополнителни елементи

5.5 Димензии на продуктот со сите компоненти

6. ТЕСТИРАЊЕ НА КОНЦЕПТОТ

6.1 Изработка на прототип за тестирање со 3д принт технологија

6.2 Тестирање во воздушен тунел

7. ЗАКЛУЧОК
1. ВОВЕД

Кинетичкиот дизајн се смета за еден од најважните концепти во современата уметност, архитектура и дизајн. Делата создадени со следење на овој концепт ја нагласуваат динамиката или четвртата димензија во уметноста. Уметниците кои создаваат ваков вид на дела не се задоволуваат со објективното гледање на нештата, тие не се задоволни само од сликата која ја прикажува објектот/делото, туку ставаат акцент на движењето постигнато преку различни визуелни ефекти и сензации.

Кога станува збор за кинетичкиот пристап во дизајнот на производи секако дека ја имаме во предвид поврзаноста помеѓу движењето и енергијата. Движењето користи енергија, но движењето може и да обезбеди енергија. Природните појави како струењето на воздухот и движењето на водата од најстари времиња биле користени за погонување на мелници и други направи во секојдневниот живот. Потенцијалот кој го носат обновливите извори на енергија како енергијата на ветерот, соларната енергија и хидроенергијата е голем. Примената на технологијата на искористувањето на ветерот може да даде голем придонес за ублажување на проблемите со загадувањето на природата, а истовремено да има и свои економски и социјални бенефити.

Индустриските дизајнери се јавуваат како значајни соработници во стручните тимови во соработка со експери од сите области на науката и технологијата кои во последниве неколку децении имаат евидентни обиди да креираат изуми кои ќе го подобрат искористувањето на ветерот како енергија. Тие се повикуваат на модерни науки како бионика и науката која ги истражува принципите во дизајнот на формите, како единств, рамнотежа и движење, при што доаѓаат до дизајн решенија кои помagaат во создавањето на нови технологии. Нивните знаења од областа на моделирање и анализирање на геометријата на различни биолошки форми имаат голема важност во истражувањата за изнаоѓање најсоодветни и најефикасни форми за решавање на проблемот на движење поттикнато од природни влијанија.

1.1. Цели на истражувањето

Основната цел на овој магистерски труд е да се даде придонес кон дизајнот и проучувањето на форма погодна за развој на производи придвижувањи од природни влијанија. Конкретна цел ќе биде да се истражат современите трендови во областа на индустрискиот дизајн и современите технологији достигнувања кои ќе бидат теоретска подлога, неопходна за креирање на иновативно концепт решение на модуларна бионичка форма и структура која може да биде придвижуваена од природни влијанија. Понуден се неколку варијанти на форми и модуларни кинетички структури инспирирани од природата кои би можеле да бидат применувани во различни видови производи со можност за придвижување под дејство на природни феномени како ветер, дожд, морски бранови итн. Овие форми и структури би можеле да најдат примена во дизајнот на индустриски производи и архитектонски објекти, но исто така во дизајн на опрема, мебел, играчки за деца, а секако и во посложени инженерски решенија.
1.2. Методологија и методи на истражувањето

Во оваа магистерска работа се применети современи методи кои се применуваат во индустрискиот дизајн. Потрагата по форма соодветна на поставените дизајнерски барања е беше извршена со примена на принципите на биониката, модуларниот дизајн и кинетичка скулптура. Бионика е интердисциплинарна наука која има за цел да понуди методи со кои преку потрага во природата би се обезбедиле решенија за инженерски и дизајнерски проблеми во различни области и грачки на наука и техника, вклучувајќи го и индустрискиот дизајн. Со примена на бионичкиот принцип „од дизајн проблем до бионично решение“ се изврши потрага кои решенија во природата со цел од нив да се извлечат суштинските карактеристики кои би биле одговор на дизајнерската задача. Потребата од комбинирање на повеќе функции подразбираше примена на принципот на модуларност, што во современиот индустриски дизајн е еден од најчесто применуваните методи кои нудат можност за креирање на голем број варијантни решенија како и креирање на ликовни принципи кои во себе ги носи кинетичката скулптура.

1.3. Фази на истражувањето

Истражувањето во рамките на овој магистерски труд се одвиваше во следните фази:

I. Теоретска анализа која се состои од проучување на расположивата литература и научни трудови од областа на биониката, модуларниот дизајн како и потрага по современи форми и дизајн решенија од областа на кинетичката скулптура.

II. Прецизно дефинирање на дизајнерскиот проблем. Истражување заради изнаоѓање на форма која може да обезбеди следење на геометриски ритам за креирање на структура која би могела да биде придружена од природни влијанија (воздушни или водени струења и сл.).

III. Истражување на пазарот и дефинирање на потребата од производ на кој може да биде применет принципот на придружување од природни влијанија. Во оваа фаза беше неопходно да се изврши анкетирање на потрошувачите со цел да се утврдат нивните ставови околу прифаќањето на таков вид технологија и што очекуваат од неа.

IV. Во четвртата фаза е извршено реформулирање на претходно изнесените барања преку дефинирање на соодветни функции.

V. Во петата фаза, според извршениот реформулативан, е проведено истражување на појави, процеси и структури од природата со цел да се најде соодветен биолошки модел, како урнек кој ќе биде инспирација за решавање на дизајнерскиот проблем. На овој начин е извлечен биолошки модел. Преку анализа е дојдено до избор на бионички модел кој е најсоодветен урнек за решавање на дизајнерскиот проблем.

VI. Во следната фаза, следејќи го бионичкиот модел и претходно утврдените начела, е генериран концепт решение на кинетичка форма и структура.

VII. Во седмата фаза е опфатена деталната разработка на избраниот концепт – изработка на CAD модел, технички цртежи, детален опис на компоненти и материјали, визуелизација и презентација на резултатите.

VIII. Во последната фаза е извршено тестирање на моделот кое вклучува изработка 3д принт модел и негово тестирање во воздушен тунел.
2. ТЕОРЕТСКА АНАЛИЗА

Теоретската анализа е поделена во три сегменти или дисциплини, и тоа: Бионика, Модуларен дизайн и Кинетичка скулптура

2.1 Бионика

Природата низ историјата се покажала како богат извор на инспирација за дизайн на производи. Биониката како интердисциплинарна област се занимава со структури, методи и процеси кои се наоѓаат во биолошките системи. Бионичкиот дизайн обезбедува процес на дизајнирање кој вклучува форма и функционални принципи. Овој начин на дизајнирање може да послужи како мост помеѓу дизајнот и други сродни науки и затоа има значајна улога во развојот на нови производи. [1][2]

Со помош на биониката можеме да дојдеме до решенија на проблеми во дизайнот во различни области, како што се: индустриски дизайн, биоинженеринг, аеронаутика, хидронаутика, вселенска наука и биоматеријали. Биониката се срешава во две форми, емоционален превод на формата или биомимикрија на природата и бионика која се занимава со користење на функционални принципи и механизми изведени од природата. Бионичкиот дизайн е корисна алата за генерирање на нови концепти и развој на нови производи кои се визуелно пријатни и еколошки одржливи. [3]

Природата може многу да не научи за дизайнот. Процесот на креирање со помош на бионика започнува со препознавање на проблем и изнаоѓање на решение на тој проблем преку инспиративен биолошки систем. [4]

2.1.1 Примери за употреба на бионички дизайн:

- Mercedes-Benz’s се инспирира од Boxfish
Еминентната аеродинамика и ефикасност на формата на boxfish рибата (Слика 2) се покажа како основа на бионичкиот модел на Mercedes-Benz од 2005та година (Слика 1). Овој многу симпатичен рационализиран автомобил има 65% помал коефициент на отпор на воздухот отколку другите компактни автомобили од тоа време. [5]

- Philips Webcam на дизајн студиото Flynn Product Design

Интересни форми на животни евоцират и интересен дизајн. Таков пример е Philips Webcam од студиото Flynn Product Design (Слика 3). Формата на дизајнот е инспирирана од пајак и октопод. Дизајнот на нозете помага камерата да се позиционира по аглите. [5]

- Morphotex Structural Colored Fibers инспирирани од Morpho пеперути

Morphotex fibers - морфотек влакна (Слика 4) се инспирирани од vibrant blue (енергично сино) на Morpho пеперути (Слика 5). Крилата на овие пеперутките се изработени од многу слоеви на протеини кои ја рефлектираат светлината на различни начини. Вибрантните бои на влакната на овој материјал се имитираат без употреба на бои или пигменти. [5]
- Бојата Lotusan инспирирана од структурата на листот Sacred Lotus

Слика 6 (Хидрофобната површина) Слика 7 (Свет Лотос)

Комплексната површина на големи крилести инсекти, како што се пеперутките и светиот лотос (Слика 7), остануваат без нечистотија благодарение на нивната сложена површинска топологија и начинот на интеракција со физиката на молекулите на водата. Хидрофобната површина овозможува самочистење. Оваа обвивка ги користи принципите на микро-структура при што автоматски останува чиста после дожд (Слика 6). [5]

- Air-ray балонот на Festo

Слика 8 (Хибриден летачка структура)
Овој балон е инспириран од manta гау рибата. Станува збор за хибриден летачка структура на далечинско управување исполнета со хелиум и погон на крилата (Слика 8). Важно да се спомене дека се работи за структура инспирирана од животно кое живее во водната средина која потоа наоѓа примена во воздушна средина. [5]

- Бионички пингвини

Бионички пингвини кои се всушност автономни подводни возила кои можат да се движат низ водите и да воспостават диференцирани, варијабилни модели на однесување во групно работење” (Слика 9). Спој помеѓу наутика, роботика и AI-вештачката интелигенција. [5]

- Екстра брзиот Bullet Train инспириран од Kingfisher птицата

Слика 9 (Бионички пингвини)

Слика 10 (Bullet Train)
Во обид да се решат крајно гласните звуци кои се случуваат кога јапонскиот воз излегува од тунелите, јапонските инженери го проучиле профилот на птицата Kingfisher (Слика 11). Носот на овој воз е дизајниран на тој начин што е имитиран клунот на оваа птица. Кога птицата заронува во вода таа практично не испушта никаков звук (Слика 10). Овој феномен на прекршување на физиката на водата, јапонските инженери го искористуваат да го решат проблемот на пробивање на воздушната бариера кога возот излегува од тунели. [5]

- Миксер за вода инспириран од цвеќето Lily од страна на Pax Technologies

Центрипеталните спирали на цветот од Кала помагаат во протокот на течност (Слика 13). Ова ги инспирира дизајнерите да дојдат до дизајн решение на овој миксер за вода што меша повеќе течност без потреба за голема моќност на вртежи (Слика 12). [5]
• Monofin или моноперка дизајнирана од Lunocet

Слика 14 (Моноперка)

Lunocet Рино перка инспирирана од перка на делфин е идеална помош за пливачите. Изработена е од силикон, покриен со јаглеродни влакна и титаниумска подлога (Слика 14). Овој систем нуди иста моќност на спуштање како искачување. [5]

• Турбина инспирирана од перката на Humpback китовите

Слика 15 (Перка за турбина)
Испакнатините кои се наоѓаат на перките на Humpback китовите се инспирација зад лопатките на на оваа ветерна турбина (Слика 16). Користењето на дизајнот на перката на китот ги направи овие турбини потивки, со поголем коефициент на вртежи при ниски ветрови и подобра изведба при јаки ветрови (Слика 15). [5]

2.2 Модуларен дизайн

Модуларниот дизајн во основа е разложување на комплексни системи во едноставни модули (Слика 17). На овој начин се поедноставува процесот на организирање на сложени дизајни и процеси. Концептот првпат е воведен во шестнадесетте години од минатиот век. Модуларноста станува нов концепт за развој на различност, каде што со развој на специфични модули не се влијае на главната инфраструктура. Сложените проблеми се разложуваат на неколку мали. Денес модуларниот дизайн е присутен во многу области на дизајнирањето и производството. [6]

Главните предности на модуларниот дизајн се флексибилност во дизајнот и намалување на трошоците. Поради групиране на компонентите на секој модул, дизајнерот може лесно да направи измена на поединечните модули наместо да го промени целиот дизајн. Покрај тоа, системот може едноставно да се надградува со додавање на нови функции со приключување на нов модул, така што системот може да се зголеми во одреден опсег. Модуларните компоненти исто така овозможуваат истовремен инженеринг и флексибилно производство. Со модуларен дизайн имаме можност за класификација на сите компоненти во различни производи во различни варијанти и изработка на вообичаени модули за различни платформи. Со тоа, станува изводливо да се прилагодат големите фамилии на производи, со голема побарувачка, заради постигнување економичност при зголемен на обем на производство. [6]
Модуларниот дизајн се потпира на архитектурата на производот и концептите на платформата на производите. Архитектурата на производот е дефинирана како шема каде физичките компоненти се поврзани со функционални елементи за да формираат разни производи. Архитектурата може да биде дизајнирана како модуларна, генерирајќи „еден-на-еден” однос помеѓу функционалните и физичките елементи (Слика 18). Целта е да се раздвои секој елемент, така што промената во една компонента не влијае на промените во другите, ниту на функционален, ниту на физички начин. [7]
2.2.1 Модуларност и архитектура на производи

Архитектурата на производот може да се дефинира како начин на кој функционалните елементи на производот се распоредуваат во физички единици и начинот на кој комуницираат овие единици. [7]

Дизајнот на архитектурата на производот се јавува во фазата на дизајнирање на конфигурацијата. Конфигурацискот дизајн е процес на синтетизирање на структурите на производите со одредување на компоненти и под-склопови во производот и како тие се распоредени просторно и логично. Конфигурацијата на производот ги контролира карактеристиките на изработка и склопување на производот. Исто така, ја контролира и прилагодливоста на производот неопходна за да одговори на промени во барањата на клиентот. [7]

Честопати, за архитектурата на производот се размислува во однос на неговите модули. Модул е физичко или концептуално групирање на компонентите. Модуларноста е концепт на распаѓање на системот во независни делови или модули што можат да се третираат како логички единици. Модуларноста е дефинирана како однос помеѓу функционалните и физичките структури на производот, така што постои кореспонденција еден до еден или многу-на-еден помеѓу функционалните и физичките структури и при што се минимизираат ненамерни интеракции помеѓу модулите (Слика 19). [7]

Слика 19 (Модуларен дизајн 3)
2.2.2 Модули

Модуларен дизајн на производи се однесува на дизајнирање производи, склопови и компоненти кои исполнуваат различни функции преку комбинацијата (конфигурација) на различни градежни блокови-модули (Слика 20). Многу водечки светски компании имаат спроведено истражување кое во сите случаи има покажано дека зголемената модуларност на производот дава позитивни ефекти во вкупниот проток на информации и материјали во една компанија, од развој и купување до складирање и испорака. [7]

Слика 20 (Модуларен дизайн 3)

2.2.3 Типови на модуларен дизайн

 Во теоријата на техничките системи, се наведува дека се потребни четири различни типови на модели за да се опише техничкиот систем и процесот на трансформација на кој истиот влијае. Овие типови се наредуваат: процес, функција, структура на органи и компоненти. Се вели дека овие типови ги дефинираат дизајнерските карактеристики на системот за трансформација. Во контекст на процес на дизајнирање, исто така е неопходно да се има модел во кој се наведени целите за процесот на дизајнирање, т.е. спецификација на дизајнот. Спецификацијата и структурите се поврзани со причинско-последични односи: процесот ги одредува функциите, функциите ги создаваат органите, а органите се материјализираат од компонентите. [6] [7]
2.3 Кинетичка скулптура

Зборот кинетично, кој е научен термин, е прв пат искористен во визуелната уметност од страна на Наум Габо и Антон Певснер. Како ликовен принцип го користат конструктивизмот кој е основа на Дадаизмот. Уметниците кои работат на ваков тип на скулптури не се задоволни само од сликата кој ја прикажува објектот/делото. Основна единка на делото е движењето. [8]

Кинетичката скулптура е поделена во следните категории:

1. Кинетичка скулптура создадена од оптичка илузија
2. Кинетичка скулптура покрената од природни појави како ветер, дожд, вода, струење на воздух итн.
3. Кинетичка скулптура која својот лик го добива со движење на аголот на гледање односно со движење на публиката.
4. Кинетичка скулптура која користи светло.
5. Кинетичка скулптура која е водена од претходно програмирана механика.

Кинетичката скулптура се смета за еден од најважните концепти во модерната, современа уметност. Делата создадени со овие ликовни принципи ја нагласуваат четвртата димензија во уметноста или динамиката. Уметниците кои создаваат ваков вид на дела не се задоволуваат со објективното гледање на нештата. [8] [9]

2.3.1 Кинетичка скулптура создадена од оптичка илузија

Ситуација во кој објективната реалност е различна се нарекува оптичка илузија. Информацијата која преку очите стига до мозокот создава перцепција која не одговара со физичките димензии на изворот за оптичката илузија. Постојат три вида на оптичка илузија: слики кои изгледаат различно од објектот кој е презентиран, психолошка оптичка илузија која е стимулирана од пренагласени ликовни елементи (контраст, боја, големина, позиција итн.) и конгативна илузија или илузија која го лаже мозокот и создава вид на халуцинација. [9]

Кинетичка скулптура создадена со оптичка илузија може да предизвика различни емоции со секое ново гледање на делото. Иако делото делува статично, чувството на движење е предизвикано со илузија. Движењето на делото се повторува со секое ново движење на окото. [9]

 Во оваа уметност најистакнат претставник е Виктор Вазарели. Тој користи квадрати, кругови и елипси кои се испреплетуваат во позитивен и негативен простор, линеарна градација и абстракција од повеќе бои за да создаде визуелна илузија (Слика 21). [9]
Израел Јаков Агам е уште еден уметник кој создава ваков вид на уметност. Тој се фокусира на дела кои се под влијание на времето, оптичка илузија преку движење и игра на светлината. Неговите дела се испреплетени форми, патерни, кои се менуваат и површини кои се повторуваат една над друга (Слика 22). На прв поглед на неговите дела се добива чувство на илузија. [9]

Илхан Коман, познат во Италија како турскиот Да Винчи има изработено скулптура на жена која на прв поглед изгледа статично, но како што се проаѓа покрај неа се добива чувство дека таа се движи (Слика 23). [9]
2.3.2 Кинетичка скулптура придвигена од природни појави како ветер, дожд, вода, струење на воздух итн.

Овие скулптури се состојат од делови кои се движеат од надворешно влијание. Во овие скулптури природните појави се клучни за нивното движење. Скулптурите од овој вид знаат да бидат со статично, споро или брзо движење. Уметникот треба да ги пресмета формите кои ќе се појават на сметка на ова движење за да го изгради своето дело. [8] [9]

Александр Калдер е водечки уметник во овој жанр. Тој го користи струењето на воздухот во неговите скулптури. Тие наоѓаат место и во натрешен и надворешен простор и ги нарекува "Mobiller" (Слика 24). Тој се води по филозофијата дека скулптурата е и објект и случаување. [9]
Тхео Јансен од Холандија создава скулптури со прецизност на инженер. Се отказува од традиционалниот начин на гледање и презентирање на скулптурата. За него секое дело е визуелен експеримент и само така модерната вистински може да оди напред. Се повикува на математички калкулации за да ги придвижи неговите скулптури. Го користи ветерот, каде што неговите скулптури создаваат електрична енергија која се искористува во друг елемент на движење. Неговите дела се различни од оние на други уметници кои творат кинетички скулптури. Делата на Тхео ја менуваат локацијата и формата (Слика 25). Спред него тој и дава нов живот на скулптурата со тоа што ја придружува од локација на локација. За придружување на скулптурите користи бионички системи како нозе и зглобови со што неговите скулптури добиваат животински изглед. [9]

Слика 25 - дело на Тхео Јансен

Јанет Екелман, Луман Витекер и Џефри Лауденслагер се уметници кои исто така го користат струењето на воздухот и ветерот да креираат кинетички скулптури. Јанет Екелман во пешачка зона во Оксфорд има создадено кинетичка скулптура со огромни пропорции. Таа се наоѓа помеѓу две големи згради на висина од 180м (Слика 26). Композицијата на оваа скулптура се состои од платнени плочи кои се веат на ветерот. Платната се составени од силни живи бои, испреплетени заедно. Скулптурата реагира на движењето на воздухот, а со тоа предизвикува ритмично движење на боите и формите. Ноќе скулптурата е осветлена и дава различен визуелен ефект. [9]
Американскиот уметник Антони Хов изработува кинетички скулптури со циклично движење предизвикано од ветерот. Своите ротирачки скулптури ги изработува од нерѓосувачки челик (Слика 27). Со неговата уметност овој скулптор има за цел преку циклично движење да направи конекција помеѓу местото каде што е изложено делото со неговата природна околина и само делото. Неговите скулптури создаваат игра на светлина, тие фрлаат различни сенки, сете тоа придонесува просторната перцепција да стане еден вид на ментална илузија која може да има и хипнотизиращи ефект. [9]
Џефри Лауденслагер постигнува движење со комбинација на геометриски форми кои балансираат на ветерот (Слика 28). Тој е еден од најзначајните скулптори од 21век. Геометриските тела во движење создаваат исузија на нови форми. За своите дела користи материјали како титаниум и нержгосувачки челик. Неговата уметност се споредува со уметноста на друг американски скулптор, Џорџ Рики кој користи тензија за да предизвика движење во скулптурата (Слика 29). [9]

2.3.3 Кинетичка скулптура која својот лик го добива со движење на аголот на гледање односно со движење на публиката

Најпознат скулптор кои се занимава со овој вид на кинетичка скулптура е венецулскиот уметник Исус Рафаел Сото. Тој е против термините форма и пластика кои се фундаментални за скулптурата. Тој и дава ново значење, нов контекст на формата со комбинација на обоени површини и форми. Со колоритни форми наредени на одредени места тој предизвikuва движење. Користи јажиња и обоени метални шипки. Движењето не е предизвикано од надворешни влијанија туку од самото движење на гледачот, со промена на аголот на гледање на скулптурата при што се променува и самата форма (Слика 30). Во овие дела се губи материјалната форма и гледачот со помош на оптичка вибрација стига до ново гледање на просторот. Во овие скулптури позицијата на гледање е најважна зашто секоја нова позиција на гледање рассказува нова приказна на делото. [9]
Дејвид Бориани преферира да користи традиционални техники за изработка на скулптура како и експериментални техники или римејд техники за своите дела (Слика 31). Времето и случувањето се доминантни во неговите дела. Тој секогаш го вклучува движењето на публиката во своите дела. Првата интерактивна изложба на Бориани е во Париз 1964 под наслов "Spazio + linee luce + spettatore". [9]
Денес уметницата Тереза Хендрик користејќи контрадикторни фигури раскажува поетска приказна преку своите дела. Нејзини најпознато дело е "Wings" (Слика 31). Во ова дело таа користи крила од животинско потекло врзани на ротирачки механизам. Тие можат да се придвижат само со вртење на рачка со што дава аналогија и критика дека денешниот човек може да ги рашири своите крила односно да стигне до својата цел само ако е придвижен од надворешен фактор. [9]

Слика 31 - дело на Тереза Хендрик

2.3.4 Кинетичка скулптура која користи светло

Скулпторот Николас Шофер ги поставува принципите за користење светло, време и динамика во скулптурата. Во неговите дела тој ја истражува рефлексијата предизвикана од движење и светло. Прави исчекор со тоа што додава електронски кибернетски функции на своите дела. Неговите дела ги нарекува "spatial dynamics", со додавање на движење и звук. Кога додава и светло ги нарекува "Light Dynamic" (Слика 32). Неговите кинетички скулптури се состојат од метални цевки и геометриски форми во комбинација со обоени палети, кои емитираат звук и светло во зависност од атмосферski промени кои се регистрирани од сензори. [9]
Друга студија од овој тип на скулптура е направена од уметникот Џон Хели која се заоснова на принципот на движење на светлината. Тој ги трансформира формите во патерни кои се рефлектираат на сидовите, при што измислува игра помеѓу тродимензионалност и волумен, патерни и простор, површина и внатрешна површина, статичност и движење (Слика 33). [9]
2.3.5 Кинетичка скулптура која е водена од претходно програмирана механика

Важно да се спомене за овој вид на кинетичка скулптура е тоа што овие дела се водени од компјутер односно од претходно составена програма со што може да се каже дека овие скулптури имаат претходно детерминирано движење. Најпознат уметник од оваа област е германецот Јоаким Саутер кој твори во денешницата. Неговите дела се наречени и кинетичка симфонија. Златни триаголници кои се просторно наредени да отцртуваат одредена форма со помош на програма ја менуваат својата форма при што даваат нов лику на кинетичката скулптура (Слика 34). [9]

![Слика 34 - дело на Јоаким Саутер](image)

Деветнаесетиот, двадесетиот и двадесет и првот век се време на промени во скулптурата како просторна сензација. Уметниците кои користат кинетички елементи внесуваат нова динамика во гледање на скулптурата. Движењето и четврта димензија стануваат реални термини кои можат да се земат како ликовни принципи во создавање на едно просторно дело. [8]
3. ПРЕЦИЗНО ДЕФИНИРАЊЕ НА ДИЗАЈНЕРСКИОТ ПРОБЛЕМ

Според спроведеното истражување на биониката, модуларниот дизајн и кинетичката скулптура е дефиниран дизајнерски проблем кој во својата форма треба да ги содржи следните функции изведени од поединечните дисциплини, и тоа:

Бионика

Дизајн решението треба да е инспирирано од природен систем кој вклучува форма и функционални принципи изведени од истиот систем. Формата треба да предизвикува чувство на емоционална допадливост која сама по себе го нуди природата.

Модуларност

Водејќи се по модуларниот принцип, дизајнот треба да е составен од поединечни модули кои ќе функционираат како еден единечен орган. Ова ќе го олесни процесот на производство и на долгорочен план ќе се покаже како економски исплатливо решение.

Кинетичка скулптура

Дизајн кој ќе се основа на принципот на кинетичка скулптура покрената од природни влијанија (воздушни или водени струења и сл.). Потребно е да се изнајде форма која ќе превземе силата на водата или ветерот и ќе ја пренесе во кинетичка енергија која ќе резултира со ротационо движење. Таа во себе како највлијателен треба да го содржи ликовниот принцип на геометриски ритам. Логиката налага дека треба да се изнајде форма која функционира на систем на површини кои ја задржуваат силата на ветерот и водата.
3.1 Истражување на пазарот

Истражуването опфаќа home decor, поконкретно светлосни елементи и употреба на различни типови на перки за вертикални ветерни турбини. Во оваа зошто е извршено анкетирање на потрошувачите со цел да се утврдат нивните ставови околу прифаќањето на ваков вид технологија и што очекуваат од неа.

Кога се работи за светлосни елементи сеуште на пазарот преовладуваат статични објекти со веќе развиена естетика. Преовладуваат дизајн-решенија кои влечат корен од традиционалните ликовни елементи кои се развивале со векови наназад како што се линиија, форма, текстура итн.

Во новата историја светот се запознава со нова уметничка дисциплина наречена Кинетичка скулптура. Таа на гледачот му нуди нов ликовен елемент односно четврта димензија на просторно движење, а со тоа и нова визуелна сензација. Индустрискиот дизајн секогаш е чекор поназад од ликовната уметност и затоа и кинетичките форми сеуште не се во целосна мера стигнати во производството на продукти за широка потрошувачка. Повеќе се јавуваат како просторни инсталации, помалку како home decor.

Доколку ќе прифатиме идејата дека ако нешто свети и се напојува со електрична енергија, зошто тој објект да не е аморфен и да ја менува и својата форма или да држи динамичен ритам. Оваа идеја можеме да ја погледнеме и обратно, ако нешто се движи зошто тоа само да не се напојува, нешто како ветерна турбина која свети со тоа што сама се напојува. Така доаѓаме и до другиот систем кој е тема на истражување, а тоа е ветерна турбина.

Кога се работи за ветерните турбини, тие ја користат енергијата на ветерот и ја трансформираат во друга форма во електрична енергија. Имено, силата на ветерот преку реактивна форма како кинетичка енергија се пренесува во ротирачки модул преку електричен генератор. Во минатото е експериментирано со различни модели на ветерници кои со својот дизајн линиското движење на ветерот го трансформираат во ротирачко движење. Нивната генерална поделба е на: ветерници со хоризонтална оска, и ветерници со вертикална оска. Праксата покажала дека ветерниците со хоризонтална оска се поефикасни од ветерниците со вертикална оска поради тоа што целат кон експлозиране на брзи ветрови каде што пак што турбините со вертикална оска се покажале како неефикасни. Наспроти тоа, кога се работи за слаб ветер, ветерниците со вертикална оска се покажале како поефикасни. До дека хоризонталните ветерници го достигнале врвот во максимално експлозиране на ветерот, функцијата на вертикалните ветерниците е тема на размислувања и нови дизајни, нови реактивни тела, со цел што поефикасно да се искористи енергијата на слабиот ветер (со мала брзина) кој почесто го има во нашата средина.

Врз база на овие информации се отвора можност за развој на нови решенија односно на дизајни на вертикални турбини за домашна употреба. Во моментов на пазарот постојат одредени производи од кои можат да се издвојат: Windmill Wind Turbine (користи класична технологија или хоризонтална оска), Tumo-Int Wind Turbine (користи класична технологија или хоризонтална оска).
и Happybuy Wind Turbine (користи вертикална оска). Според спроведеното истражување можеме да заключиме дека на пазарот постојат мал број на производи и најголемиот дел користат класични перки, а тоа значи дека има голем простор за развој на нови реактивни перки или структури односно им се отвора простор на индустриските дизајнери користејќи методологији како Бионика, Модуларност и Кинетика да создаваат нови форми кои поефикасно ќе ја соберат енергијата на ветерот.

Дополнително е спроведена анкета од 30 испитаници за утврдување на допадливоста на дизајнот преку три ключни прашања.

1) Статичен или придвижен - аморфен дизајн?
2) Дизајн инспириран од природата или од урбанизам?
3) Дизајн фиксиран на земја или во воздух?

На првото прашање 60% од испитаниците одговори дека повеќе им се допаѓа дизајн кој е придвижен. На второто прашање 75% од испитаниците одговори дека дизајнот сакаат да е инспириран од природата. На третото прашање 82% од испитаниците одговори дека сакаат дизајнот да го видат фиксиран во воздух.

Кога ќе се земат во предвид истражувањата за двата различни типа на производи како и спроведената анкета можеме да заклучиме дека е потребно да се издизајнира нова реактивна форма која од една страна ќе биде естетски допаѓлива а од друга страна ќе биде и функционална. Формата треба да е биониспирарана. Истата треба да биде придвижена од надворешно влијание и да е прицврстена во воздух што е и тема на развој во овој магистерски труд.

3.2 Дефинирање на соодветни функции

Во оваа фаза е извршено реформулирање на претходно изнесените барања преку дефинирање на соодветни функции.

По извршената анализа на одредени продукти на пазарот се јавува потреба за изработка на нова иновативна перка која ќе реагира на енергијата на движење на воздухот или водата и преку оваа реактивна перка таа енергија ќе биде претворена во кинетичка енергија преку ротирачко движење.

Биониката е одбрана како главен метод во изнаоѓање на оваа форма. Во себе формата треба да содржи можност на поделба во сегменти-модули кои заедно ќе функционираат како единечен систем. Понатаму овој модуларен пристап ќе влијае на економијата на производство. Изучувањето на кинетички форми ќе придонесе за подобро разбирање на реактивни кинетички структури, а со тоа и полесно да се изнајде соодветен бионички систем кој ќе одговара на барањето.
3.3 Изнаоѓање на соодветен биолошки модел

Во оваа фаза, според извршената реформулација, е спроведено истражување на појави, процеси и структури од природата со цел да се најде соодветен биолошки модел, кој ќе биде инспирација за решавање на дизајнерскиот проблем.

Истражувајќи новооткриени видови, досега непознати за човештвото, се свртев кон истражувањето на морињата поконкетно коралните гребени. Трагајќи по соодветен био систем го сретнах Горгонскиот корал кој во себе ги има сите потребни функции (Слика 35). Овој вид на корал е откриен во 2007 години и додека тој е фасцинантен во светот на науката, сеуште Биониката го нема земено како модел за развивање на корисни системи во областа на индустрискиот дизајн.
Проучувајќи го коралот дознав дека движењето го врши преку ротација околу својата оска, а правецот го добива со виткање на телото. Тоа ме наведе да размислувам дека можеби токму оваа форма преведена во дизајн ќе биде соодветно решение за кинетички дизајн затоа што самата природа создала форма која е хидродинамична. Знаеме дека хидродинамичните форми како перките исто така јавуваат добри резултати како аеродинамични форми. Од друга страна аеродинамичните форми јавуваат одлични резултати во водена средина. Одличен пример за тоа е хидрофоилот кој има форма на глајдер и јавува одлични резултати во водена средина и е основа за нов воден спорт (Слика 36).

Слика 35 - Горгонски корал 1

Слика 36 - Аеродинамични форми
Со расчленување на формата дознав дека целиот корал е составен од еден единечен модул кој се повторува за на крајот целиот систем да се изгради во форма која наликува на спирала (Слика 37). Заклучно со овој момент ми стана јасно дека оваа форма одговара на последната функција за изработка на дизајнот, а тоа е модуларност.

Слика 37 - Горгонски корал 2

При подлабока анализа на формата можеме да заклучиме дека е застапена Фибоначи Секвенцата, односно Златната Спирала. Во природата Златната Спирала е многу често застапена и е одличен показател дека дизајните засновани од инспирација од природата се поефективни и попримамливи. [10]

Фибоначи секвенцата или Златни пропорции е математички сооднос кој најчесто го среќаваме во природата. Фибоначи равенката е математички сооднос кој преку низа истражувања и анализи уметникот Леонардо Да Винчи докажал дека во природата има пропорции, односно идеални, златни пропорции. [12]

Овој сооднос на златни пропорции се користи да се добие визуелна допадливост, органски изглед на композициите во дизајнот или уметничкото дело. Златната Пропорција или Правилото на третина, помага при создавање на естетски визуелна композиција која го насочува окото на гледачот на крикудатните елементи во дизајнот, во уметничкото дело или пак продукт дизајн. [11]
Како што напоменав, огромен број на дизајни во многу категории од општественото живеење се токму инспирирани од Златните пропорции во природата, во мојот случај конкретната инспирација е од Златната Спирала (Слика 38, 39). Златната Спирала е застапена најчесто во растенијата, но и во ветrott, водата, земјата. [11]

Слика 38 - Графички приказ на Златна Спирала 1

Слика 39 - Графички приказ на Златна Спирала 2

Други бионички примери каде што е застапена Златната Спирала

Слика 40 - Примери за застапеност на Златна Спирала во природата 1
Слика 41 - Примери за застапеност на Златна Спирала во природата 2

Слика 42 - Примери за застапеност на Златна Спирала во природата 2

Како што може да се забележи во горенаведените примери (Слика 40, 41 и 42), секој од нив ја поседува Златната пропорција односно Златната Спирала. Токму заради тој факт и неизбежна инспирација, многу дизајнирани производи се инспирирани од нивната композиција, исключителна естетска визуелна допадливост, и пред се функционалноста на секој од нив.

Во објаснувањето од каде е инспирацијата за овој дизајн, е посочен пример од растение корал (Слика 35), кој со својата форма и ликовна естетика, ја содржи Златната Спирала. Слично како во формата на сончогледот и други растенија кои сразмерно растат од центарот на растението (Слика 42), така е и примерот со коралот, но разликата е во квадратите кои се создаваат од центарот и се сразмерно заоблени и се добива таканаречена наутичка спирала, спирала на сончогледот. Ова е посебна спирала, засебна слична крива која ја зачувува својата форма во сите
правци, доколку замислиме кога би се вртела со непрекинато повторување. Се нарекува Equiangular бидејќи радијална линија од центарот секогаш создава ист агол на виткање на кривата (Слика 43). Оваа крива е позната од Архимед, старогрчки математичар, физичар и инженер, кој я истражувал геометријата со многубројни анализи и истражувања. [12]

Како што може да се забележи на приказот, спиралите не ја менуваат кривата, и секогаш се исти. Без разлика на големината, сите спирале се вртат сразмерно без промена на аголот. Она што е најважно е пропорцијата, а овие спирали имаат фиксна пропорција, одредувајќи ја нивната форма. [11]

![Слика 43 - Графички приказ Equiangular крива](image1)

Бидејќи сеуште нема доволно податоци за коралот од кој се инспирираат, побарав инспирација на формите и естетика и во други слични растенија (Слика 44 и 45).

Equiangular Спиралата може да се забележи и во стеблата на некои дрва кои на различен начин ги развиваат своите листови, поточно нивниот распоред ги следи елементите на Златна Спирала.

![Слика 44 - Equiangular крива застапена во природата 1](image2)
Најголема сличност со Горгонскиот корал забележав кaj растението Анамска Рака, Lonicera (Слика 46). Ова растение се среќава во неколку различни видови, а кај сите нив формата ја поседува сличноста со Горгонскиот коралот од кој се инспирираа. Дури и има слично име, Lonicera sempervirens или Coral Honeysuckle. Интересно е што во буквален превод името на ова растение асоциира на мали машини за мелење, односно цветовите личат на мали перки. [11]
4. РАЗВОЈ НА КОНЦЕПТНО РЕШЕНИЕ

Следејќи го бионичкиот модел и претходно утврдените начела, генериран е концепт на кинетичка форма и структура. Процесот најпрво започна со изработка на неколку скици за да се добие првична идеја за изгледот на оваа структура или реактивна perka. Она што е дефинирано во барањата е дека телото треба да има форма на спирала, на која се поставени perki во вид на скалила според геометриски ритам.

4.1 Изработка на почетни скици

Скица 1

Телото е поделено на 4х еднакви сегменти, односно 4х целосни ротации од <360, при што една ротација е поделена на 18х поединечни perki со растојание <20 (Слика 47 и 48).
Скица 2

Телото е поделено на 4x еднакви сегменти, односно 4x целосни ротации од <360, при што една ротација е поделена на 8x поединечни перки со растојание <45 (Слика 49 и 50).

Слика 49 (4 x <360, 8x сегменти во ротација) - Пресек 1 Слика 50 (4 x <360, 8x сегменти во ротација) - Пресек 2
Скица 3

Телото е поделено на 4x еднакви сегменти, односно 4x целосни ротации од $\times 360$, при што една ротација е поделена на 6x поединечни перки со растојание $\times 60$ (Слика 51 и 52).

По визуелно графичкиот приказ на трите различни модели (Слика 47, 48, 49, 50, 51 и 52) можеме да заклучиме дека формата е ликовно оправdana и во неа се вклучени линиjата, формата и геометрискиот ритам како главни ликовни елементи. Важно е и да се спомене дека во сите три примери се присутни златните пропорции, односно златната спирала.
4.2 Изработка на прототипи

Бидејќи се работи за тродимензионална форма со сложени геометриски карактеристики многу е тешко истата да се долови со цртеж во перспектива. За да може подетално да се разгледа формата тродимензионално изработен е првиот прототип (Слика 53). Со цел овој прототип да е поверодостоен на оригиналниот бионички пример најпрво ќе ги погледнеме карактеристиките на коралот.

Основната форма на биолошкиот пример е верига која наликува на чешел. При виткање на тој чешел околу централна оска во спирална форма, надворешните нишки се распоредуваат при што целиот објект добива јајцевидна форма. Истото се случува и со коралот. За физички да функционира објектот најважно е да е изработен од еластични материјали. Централното тело мора да може да се извиква во спирай и да има доловно цврстина да ја издражки тежината на нишките кои ќе бидат прикачени на него.

Прикрврстените нишки треба да бидат еластични до тој степен што ќе формираат полулак од својата сопствена тежина.

Прототип 1

Слика 53 (Прототип бр. 1)

- Телото на прототипот е од гумена цевка која се користи за компресори
- Надворешните нишки се од тврда полна пластика. Истата се вика тример и се
 користи како сечиво за рачни косилици
- Централната оска која го држи телото е челична жица за бандаж на велосипед

Можеме да забележиме дека првиот прототип во целост ја имитира формата на биолошкиот пример. Изложен на воздушно струење тој ротира околу својата оска. Во овој
протитип не е запазен модуларниот начин на градење на формата, а тоа значи дека внатрешната спирала е составена од единечен елемент наместо од поединечни модули. Ова модуларно градење на формата ќе биде застапено во подоцнежната фаза на развој. Овој прототипформата ја задржува со прицврстување на одредени точки на метална централна оска. Прототипот закачен на еластично јаже се ротира при струење на воздухот. Таа ротација е прекината кога јажето ќе достигне максимална тензија на виткање. Од ова искуство можеме да заклучиме дека цел моделот да има непрекинато ротирачко движење потребно е да се изработи ротирачки модул на кој истиот ќе биде прицврстен. Затоа што се одлучив објектот да е висечки, ротирачкиот модул треба да има таква функција да може да се движи непрекинато незavisно од тежината на моделот заради што може да се создаде триење и моделот да не се движи. Овој проблем е решен на тој начин што ротирачката оска е прикачена на лагери кои ќе го анулираат триењето создадено од тежината на моделот. Истото е претставено во следната Скица 4 (Слика 54).

Скица 4

![Скица 4 (Ротирачка оска прикачена на лагери)](image-url)
Со дефинирање на овој нов елемент (Слика 54) кој треба да биде вклучен во дизајнот се јави потреба за изработка на нов прототип. Во оваа фаза на развој протиповите ги изработуваат од материјали и системи кои ми се достапни кои ќе одговараат на целите. За новиот прототип искористив гумаца цевка со дијаметар од 8мм (Слика 56) и пластични стеги со должина од 50цм (Слика 57). За ротирачкиот модул искористив тркало од скирол (Слика 55). Тркалото од скирол се покажа како најсоодветно затоа што е составено од гума и жлебови за два поединечни лагери. Знаям дека ова тркало е дизајнирано да издружува голем стрес и силни удари поради што бев сигурен дека тежината на целата конструкција нема да влијае на ротацијата односно нема да има прекини заради триење и тежина.

Слика 55 (Внатрешни компоненти на скирол) Слика 56 (Гумацца цевка, d=8mm) Слика 57 (Пластична стега, 50x1cm)

Прототип 2

Слика 58 (Прототип 2, еластична централна оска)
Како што може да се види на фотографијата (Слика 58), Прототип 2 уште повеќе го имитира бионичкиот пример и е многу поголем од првиот прототип. Формата која на почеток е како чешел и од својата тежина се витка во спирала. Во однос на тоа дека се работи за потешка конструкција целиот систем јавува одлични резултати и на најспоро движење или струење на воздухот а тоа ни дава до знаење дека ротирачкиот модул ја врши својата работа. На овој прототип исто така се гледа и модуларниот пристап на изградба на формата, а со тоа и појава на геометрискиот ритам кој може да се забележи во првичните скици (Слики 47, 48, 50, 51 и 52).

Прототип 2 (Слика 58) е еластична форма со флексибилна централна оска. Во понатамошното истражување сакаме да се обидам и со форма со крива оска и за таа цел изработив уште еден прототип, Прототип 3 (Слика 61) кој наместо гумена цевка како централна оска има дрвена цилиндрична прачка. Кога го прицврстив на ротирачкиот модул, при јако струење на воздухот протипот почнува јако да се ниша за разлика од Прототип 2 кој е еластичен. При тестирање проблемот го локирав во спојот помеѓу врвот на перката и ротирачкиот модул. На тоа место се создава голема тензија која не е присутна во претходниот модел со еластична оска. Овој проблем го решив со универзален спој (Слика 59) кој дозволува виткање во сите правци а со самото тоа го ослободува притисокот во спојот и целата перка е ослободена да пронайде баланс при ротација. Тоа го изведов повторно со материјали кои ми се достапни во овој случај тоа беа лего коцки (Слика 60).

Слика 59 (Универзален спој, основна механика)
Слика 60 (Искористен универзален спој од крива пластика)

Со универзалниот спој перката и покрај тоа што е со цврста оска при струење на воздух покажува солидни резултати на ротација.
Кога ќе се споредат Прототип 2 и Прототип 3, Прототип 3 е поефикасен но за жал не ја имитира во целост формата на бионичкиот пример. Пластичните стеги во еден момент го исполнуваат модуларниот принцип но не во целост затоа што централната оска е свој засебен елемент.

За да биде целосно модуларен системот и целата конструкција да одговори на зададената цел за модуларност, треба од еден единствен елемент да се изгради целата форма од перките до централната оска во форма на спирала. Овој дел од истражувањето се покажа како најтежок но не и невозможен.

Биониката како дисциплина повторно ми помогна да добијам инспирација. За изградба на хеликсот како примери разгледував р'бети од змии и р'бет на човек (Слика 62). Овие р'бети се одличен пример за тоа како во еден бионички систем се застапени модуларни принципи за изградба на формата.
4.3 Изработка на дигитални 3Д модели

Модуларната логика на градење, движење и прицврстување на р'бетот придонесоа во изработка на првиот 3д модел, Хеликс 1 (Слика 63). Моделот е целосно изграден дигитално во 3д софтвер.

Хеликс 1

Слика 63 (3д модел на хеликс бр. 1)
Хеликс 1 се состои од еден единствен дел или модул кој скалесто во геометриски ритам се надоградува за на крај да стане една целина која соодветствува на бионичкиот пример. Градењето на хеликсот е постигнат на едноставен начин со тоа што на модулот на горната страна има издаден дел или заб додека на долната страна има дупка која е со иста димензија како издадениот заб (Слика 64). Истата дупка е поместена под агол што овозможува за виткање на хеликсот околу замислена централна оска (Слика 65). Истото може да се забележи во следните примери изведени од 3д моделот (Слика 66 и 67):

Слика 64 (Основна градбена единка на Хеликс бр.1)
Слика 65 (Хеликс бр. 1 во една ротација)
Слика 66 (Хеликс бр. 1 во повеќе ротации)
Слика 67 (Хеликс бр. 1, целосно изградено тело)

Со утврдување на основните начела за изградба на формата на модуларен начин е изработен Хеликс 2 во физичка форма како прототип (Слика 70). Во оваа фаза на развој е утврден начинот на фиксирање на поединечните модули во една единствена цврста форма.

Лего коцките ми помогнаа да стигнам до саканата форма. Оваа форма е прикажана како скица и како готов модел (Слика 68, 69 и 70).
Хеликс 2 (модуларна градба)

Скица 5

Слика 68 (Графички приказ на Хеликс бр. 2) Слика 69 (Графички приказ на одделни модули и нивно групирање)

Хеликс 2 е хеликс кој содржи 6х степени во една полна ротација како во Скица 5 (Слика 68 и 69). Единечниот модул се ротира околу имагинарна централна оска создавајќи совршен хеликс. Заемните делови се прицврстуваат на 4х контактни точки што ја прави целата конструкција многу цврста. Истото може да се види на готовиот модел (Слика 70).

Во овој дел на развојот на системот, смислена е само логиката на поврзување на одделните сегменти. Вистинскиот лик модуларните делови ќе го добијат во седмата фаза односно фазата на детална изработка.

Слика 70 (Хеликс бр. 2 - изработен од поединечни модули од тврда пластика)
4.4 Тестирање на прототипот

По утврдување на начинот на градење на формата почнав со утврдување на дизајнот на поединечните перки. За таа цел неопходно беше да се проучи однесувањето на реалниот прототип Прототип 3 (Слика 61), кој беше креиран како резултат на развојот на идејата преку анализа на недостатоците на претходните прототипи. Поради потребите на тестирањето, тој беше закачен така да виси во вертикална положба со цел да се овозможи слободна ротација на перките кои беа изложени на струење на воздухот од околината. Преку опсервација на однесувањето на прототипот беше извршена анализа на ефикасноста на одделните перки од системот изложен на воздухно струење. Спроведените бројни тестирања со Прототип 3 (Слика 61).

Истите се визуелно објаснети преку дијаграми (Дијаграм 1, Дијаграм 2, Дијаграм 3, Дијаграм 4, Дијаграм 5 и Дијаграм 6)

Дијаграм 1 (моделот се движи слободно во два правци по оската на ротација со струење од левата и десната страна од моделот)
Дијаграм 1 - прототипот е изложен на воздушно струење по целата површина на објектот. Ротациониот модул дозволува движење во два правци и перките се со рамна површина од двете страни. При ова тестирање моделот покажува несакани резултати. По тресењето се чувствува влијанието на воздушното струење, но објектот балансира во една статична точка. Затоа што се работи за геометриски еднаква површина, кога би го погледнане моделот во статична позиција, левата и десната страна имаат еднаква површина за заробување на воздушното струење. Ова е добар пример за Њутоновиот трет закон кој вели дека две изедначени спротиставени страни влијаат една на друга тогаш тие заемно се негираат.

Во Дијаграм 2 прототипот е изложен на воздушно струење само од едната страна. Ротациониот модул повторно дозволува движење во два правци и перките се со рамна површина од двете страни. Изложен на струење само од едната страна, прототипот покажува одлични ротациони својства. За да се контролира струењето само од една страна прототипот во еден случај е во непосредна близина на сид, во друг случај струењето на воздухот, контролирано, е насочено само од една страна. Вакви контролирани ситуации се ретки и се косат со целите на проектот. Објектот треба да се движи изложен на секакви воздушни струења.

Дијаграм 2 (моделот се движи слободно во два правци по оската на ротација со воздушно струење од десната страна од моделот)
Со добиените резултати од тестирањето претставено на Дијаграм 2 се јавува проблем во кој прототипот не може да оддржи континуирана ротација. Проблемот е детектиран во:

1. слободното движење во два правци на ротирачкиот модул и
2. самата форма на објектот која е геометриски еднаква, поделена на лева и десна страна, во секој степен на ротација.

Постојат две решенија на овој проблем. Првиот е ротирачкиот модул да се прилагоди да може да се движи само од една страна. Со оваа механичка кочница на една ротациона страна прототипот е присилен да се движи само во еден правец. Во моментот на балансирање ќе преовладува страната која има слободно движење и ќе започне ротација во истата. Горенаведените својства визуелно графички се претставени во Дијаграм 3.

Дијаграм 3 (Механичко ограничено движење во еден правец по оската на ротација со воздушно струење од десната страна од моделот)
Вториот начин на контролирано движење на прототипот во еден правец е со помош на нова аеродинамика на перката. Во Дијаграм 4 претставен е модел на перка која во пресек има форма на рамностран триаголник. Позиционирана е на тој начин што една од страните е паралелна со централната оска додека другата е свртена со закосената страна по средината, односно нормално на централната оска.

Дијаграм 4 (Ограничен на движење во еден правец овозможено од аеродинамиката на перката со воздушен струење од десната страна од моделот)

Она што можеме да го забележиме во Дијаграм 4 и Дијаграм 5 е дека кога воздухот удира во левата страна тој може слободно да се движи со минимален отпор заради формата на перката односно остриот дел на истата. Од левата страна се случува обратното. Кога воздухот ќе уди во рамната површина на перката се случува отпор. Оваа разлика во позитивен и негативен отпор прави целиот објект секогаш да има тенденција да се движи само од една страна без тоа да биде контролирано од механички модул.
Дијаграм 5 (Пресек на перка)

Вториот начин за контролирање на ротацијата во еден правец се јавува како поефикасен најмногу заради исключение на потребата за прикачување на нов механички дел на целиот систем. Со ова е олеснет процесот на изработка од практична и економска смисла.

Дијаграм 6 (Приказ на поединечни функции на системот)

Конечно, врз основа на спроведените тестирања и анализата на резултатите од нив, утврдени се сите делови кои се потребни за функционирање и детална изработка на системот. Истите се прикажани во Дијаграм 6.
5. ДЕТАЛНА ИЗРАБОТКА

Последната фаза ја опфати деталната разработка на конечниот концепт – изработка на CAD модел, технички цртежи, детален опис на компоненти и материјали, визуелизација и презентација на резултатите.

Врз база на анализата на насоките добиени од претходните фази започна седмата фаза. Оваа фаза е поделена во 5 главни точки, и тоа:

- Графички приказ на дизајн елементи на перката
- Влијание на изборот на материјал врз дизајнот на перката
- 3д изработка на поединечни модули на перката поделена во три фази
- Дизајн на дополнителни елементи
- Димензии на продуктот со сите компоненти

5.1 Графички приказ на дизајн елементи на перката

На (Слика 71) е претставен пресек на срцето на дизајнот, односно геометријата околу централната оска и неговата поврзаност со Фибоначи секвенцата.

Една целосна ротација е изразена во 8 чекори или 8 модули кои се ротираат околу централна оска. За финалниот продукт е одбран хеликс составен од 12 дела за една цела ротација. Истиот може да се види на (Слика 72). На истиот приказ се гледаат и димензиите на конструкцијата.
Слика 72 (Геометрија на хеликс составен од 12 дела за една цела ротација)

На (Слика 73) е претставен страничен преглед на поединечните модули и логиката околу нивното спојување. На овој приказ е претставена и дебелината на материјалот. Се работи за 5мм дебел материјал.

Слика 73 (страничен преглед на поединечните модули и логика на спојување)
Поединечните модули се изразени во (Слика 74) и (Слика 75). Во (Слика 74) може да се забележат конструктивните линии од кој се изведени модулите како и геометрискиот ритам по кој истите се конструирани.

Слика 74 (Конструктивните линии од кој се изведени модулите)

Слика 75 (Поединечни модули)
На (Слика 76) се прикажани три различни начини на спојување на поединечните модули. Сите следат геометриски ритам. На овој приказ исто така се гледа и поединечно одвојување од еден чекор. Ова одвојување е ритамот кој е потребен за целосната форма да се извитка во спирала. Од трите примери број 3 се има покажано како најдобар. Од една страна тој е најдобар заради чистината на геометрискиот ритам, а од друга заради бројот на елементи потребни да се изгради формата на хеликсот во сооднос со цврстината и тежината потребна за функционирање на крајниот продукт.

Слика 76 (Три различни начини на спојување на поединечните модули)

Слика 77 (Одбрана логика на спојување)
Во (Слика 77) можеме да го видиме третиот модул потребен за изградба на целосниот систем. Тој е изведен од логиката на поврзување изразена во (Слика 76). Овој сегмент има функција на поврзување на останатите сегменти во претходно споменатиот геометриски ритам и Фибоначи секвенца која во овој случај е хеликс со единечна прогресија.

5.2 Влијание на изборот на материјал врз дизајнот на перката

Финалниот продукт ќе биде изработен од дрво или друг материјал кој може да се пронајде во форма на 5мм плоча. Овој материјал е одабран заради економија на производство со употреба на ЦНЦ машина. Димензијата од 5мм се појавува како мотив и водилка низ целот процес на дизајнирање на поединечните модули претставен во (Слики 71, 72, 73, 74, 75, 76 и 77).

5.3 Изработка на поединечни модули на перката поделена во четири фази

5.3.1 Фаза 1

Со помош на CAD техника техничките цртежи се пренесени во тродимензионален модел. На (Слика 78, 79, 80 и 81) можат да се видат основните модули.

Слика 78 (3д модел на основен модул бр. 1)
Слика 79 (3д модел на основен модул бр. 2)

Слика 80 (3д модел на основен модул бр. 3)

Слика 81 (3д модел на основен модул бр. 4 - перка)
5.3.2 Фаза 2

Во оваа фаза модулите претставени во фаза 1 се спојуваат Склоп бр. 1. Ова склопување можеме да го видиме во (Слика 82, 83 и 84)

Слика 82 (Склоп бр. 1 составен од основни модули бр. 1, 2, 3 и 4)

Слика 83 (Склоп бр. 1 составен од основни модули бр. 1, 2, 3 и 4)
5.3.3 Фаза 3

Во фаза 3, Склоп бр. 1 се поврзува со други 11 еднакви на него сегменти за вкупна бројка од 12. Сегментите се поврзуваат во геометриски ритам кој е овозможен од конструкцијата на поединечните елементи. Со тоа се постигнува една целосна ротација или Склоп бр. 2. Ова поврзување можеме да го видиме на (Слика 85, 86 и 87).
Слика 86 (Склоп бр. 2 - една целосна ротација составена од 12х Склоп бр. 1)

Слика 87 (Склоп бр. 2 - една целосна ротација составена од 12х Склоп бр. 1)
5.3.4 Фаза 4

Во оваа фаза Склоп бр. 2 се поврзува со други 3 исти на него сегменти за вкупна бројка од 4, а тоа значи спојување на 4 целосни ротации. Завршно со ова спојување е целосно дефинирано телото на перката. Целосен приказ на перката можеме да видиме на (Слика 88, 89, 90, 91 и 92).

Слика 88 (Рендер бр. 1 - перка со 4х ротации)

Слика 89 (Рендер бр. 2 - перка со 4х ротации)
Слика 90 (Рендер бр. 3 - перка со 4х ротации)

Слика 91 (Рендер бр. 4 - перка со 4х ротации)

Слика 92 (Рендер бр. 5 - перка со 4х ротации)
5.4 Дизајн на дополнителни елементи

Дополнителни елементи кои го сочинуваат системот се: лагери, лежиште за лагери и универзален спој. Истите се претставени на (Слика 93, 94, 95 и 96).

Слика 93 (Лагери)

Слика 94 (Лежиште за лагери)
Слика 95 (Универзален спој)

Слика 96 (Склон на лежиште со лагери и универзален спој)
5.5 Димензии на продуктот со сите компоненти

На (Слика 97) можеме да ги видиме сите компоненти кои го сочинуваат целосниот систем и димензии на истите.

Слика 97 (Финален модел со димензии на поединечни компоненти)
6. ТЕСТИРАЊЕ НА КОНЦЕПТОТ

Со добивање на крајниот изглед на биоинспирираниот систем и утврдување на логиката на изградба започнува делот на тестирање. За ова тестирање беше потребно да се изработи функционален модел односно 3д принт и истиот да се тестира во лабораторијата за аеродинамика при Машинскиот факултет односно во воздушен тунел.

Тестирањето е поделено во следните 2х фази:

1. Изработка на прототип за тестирање со 3д принт технологија
2. Тестирање во воздушен тунел

6.1 Изработка на прототип за тестирање со 3д принт технологија

За потребата на тестирање, моделот претрпе промени според спецификацијата на воздушниот тунел. Работната површина на воздушниот тунел е со пречник од 285х285мм при што за успешно тестирање моделот треба да има максимална ширина и висина од 150мм. Според овие насоки финалниот модел со димензија на перката од 62х75цм (Слика 103) претрпе промени. Финалниот модел на магистерскиот труд се состои од 4х полни ротации (Слика 103) или 48 модули кои ги сочинуваат тие ротациии. За потребите на тестирањето моделот е адаптиран да има 2х полни ротации или 24 модули (Слика 104). Димензијата од 150х150мм е постигната со намалување на основниот модел со фактор на намалување 0.4166. Промена има и во должината на перките со фактор на намалување на должината од 1/2. Крајната димензија на адаптираниот 3д модел е 150х150х150мм. Со овие промени моделот е успешно адаптиран за тестирање и изработка на прототип со 3д принт технологија, истото може да се види на слика (Слика 98).

Слика 98 (Адаптиран 3д модел со 2х полни ротации за 3д принт и тестирање во воздушен тунел)
Моделот е поделен во два сегменти, централно тело и поединечни перки. Истите можат да се видат на (Слика 99 и 100).

3д принт за потребите на тестирањето е изработен од термопластика со 3д принтер кој користи FDM технологија. Изработен е во лабораторијата за 3д принт при Машинскиот факултет. Печатењето на моделот се состои од печатење на централното тело и поединечните перки. Истите подоцна се спојувани за да се добие крајниот изглед на моделот (Слика 101 и 102).

На (Слика 101) може да се види централната оска по завршување на печатењето. Потпорите кои го држат телото во понатамошната фаза на спојување се одстранети. На (Слика 102) може да се види споениот 3д принт подготвен за тестирање во воздушен тунел.
6.2 Тестирање во воздушен тунел

Во лабораторијата за аеродинамика при Машинскиот факултет е спроведено тестирање на прототипот/3д принт во воздушен тунел. Ова тестирање е со цел да се утврди реактивноста на перката односно ротацијата која ја постигува изложена на непречено струење на воздушна маса. Измерени се бројот на вртежи или вртежи во минута (врт/мин) кои ги продуцира перката изложена на различен проток на воздух измерен во метри во секунда (м/с). Процесот на тестирање може да се види на следните слики (Слика 103, 104, 105, 106 и 107).
Слика 104 (Монтирање на моделот во воздушен тунел) Слика 105 (Тестирање на протокот на воздух)

Слика 106 (Мерење на бројот на вртежи) Слика 107 (Реакција на моделот изложен на воздушно струење)
Изложен на воздушно струење прототипот непречено и со леснотија постигнува ротационо движење. Од овој експеримент е потврдена реактивноста на моделот на воздушно влијание односно неговите кинетички карактеристики. Моделот има само една страна на ротација што ја потврдува функцијата на поединечната перка (Дијаграм 4, 5 и 6).

Дополнително се изведени резултати или број на вртежи (врт/мин) кои моделот ги продуцира изложен на различна сила на проток на воздух измерен во (м/c). Резултатите се видливи во (Табела 1) и (Графикон 1 и 2).

<table>
<thead>
<tr>
<th>(м/с)</th>
<th>(врт/мин)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 - 6</td>
</tr>
<tr>
<td>2</td>
<td>7.5 - 8.5</td>
</tr>
<tr>
<td>3</td>
<td>10 - 11</td>
</tr>
<tr>
<td>4</td>
<td>12 - 13</td>
</tr>
<tr>
<td>5</td>
<td>14 - 15</td>
</tr>
</tbody>
</table>

Табела 1 (Број на вртежи на различен проток на воздух)

Графикон 1 (Број на вртежи на различен проток на воздух - линеарен приказ)

Графикон 2 (Број на вртежи на различен проток на воздух - приказ во столбови)
Според изведените мерења можеме да заклучиме дека тестиранит модел покажува одлична реактивност или ротационо движење изложен на различни јачини на воздушно струење. Утврдено е дека кога моделот е изложен на струење од 5 - 6 (м/с), 10 - 11 (м/с), 12 - 13 (м/с) и 14 - 15 (м/с) тој константно ги зголемува бројот на вртежи во праволиниски сооднос, додека изложен на струење од 7,5 - 8,5 (м/с) до 10 - 11 (м/с) бележи скок во бројот на вртежи. Ова ни дава до знаење дека работејќи во овој опсег на воздушно струење моделот покажува најдобри резултати.
7. ЗАКЛУЧОК

Презентиранито магистерски труд е пример за огромната важност на мултидисциплинарниот пристап во дизайнот на производи. Целиот труд претставува обид за примена на иновативните дисциплини Бионика, Модуларност и Кинетичка скулптура во дизайнот на формата на производи кои би можеле да генерираат енергија од алтернативни извори. Експерименталниот дел од ова истражување се состои во дизајн решение на реактивна перка која се придружува од спородвижечки ветар.

Ова истражување ги потврди очекувањата дека биониката, односно анализата на урнитеод природата може да инспирираат и понудат бројни можностиво дизајнот, како естетски так и функционални. Во овој труд е искористена Фибоначи секвенцата, односно златниот пресек, кој е и главен мотив за креирање на продуктот. Фибоначи секвенцата е градбена единка на многу природни системи.

Кинетичката скулптура како нова гранка во уметноста на модерното време придонесе за воведување на нова или четврта димензия, димензија на движење. Овој вид на уметност е во константна интеракција со гледачот заради своите аморфни карактеристики, а тоа ја прави визуелно додаатив. Оваа нова димензија на движење е во тесна врска со визуелната естетика на бионичкиот модел. Бионичкиот пример доаѓа од средина која е во константно движење и тој ја менува својата позиција преку ротација околу својата централна оска. Истата ротација е една од главните особини на понудениот продукт.

Модуларниот пристап е модерен начин на градење на формата, а потоа и начин за нејзино производство. Диазајнот е поделен во подсистеми или модули кои при изведба на формата преку геометриски ритам се надоградуваат еден над друг. Користењето на модули како модерен принцип на производство низ бројни примери се има покажано како економски исплатив. Крајниот производ е перка со свој посебен систем за прицврстување која кинетичката енергија на ветерот ја пренесува во ротирачко движење. Реактивноста на перката е доказана со научен експеримент во лабораторија со воздушен тунел. Таа е естетски оправдана и може да се користи како база за креирање други нови продукти за широка потрошувачка, од елементи за домаашна декорација до ветерни турбини кои произведуваат енергија.

На крајот може слободно да се донесе заклучок дека интердисцилоинарниот пристап во дизајнот на производи е повеќе од потребен. Примената на иновативни техници и методи, вклучување на стручни лица од повеќе области дава посеопфатен пристап во дизајнот, кој резултира со подобри, поквалитетни и попосакувани производи.
Користена литература:

